Kizito NKURIKIYEYEZU, Ph.D.

Isolation

boundary

Main

Switching

Primary side

Voltage-doubler

capacitors

Secondary side

Main filter

■ Transistors are three-terminal devices —unlike diodes, which have only two

- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor.
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor.
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

- Transistors are three-terminal devices —unlike diodes, which have only two
- The basic usage of a transistor is the ability to use the voltage between two terminals to control the current flowing in the third terminal
- They are more useful because they present multitude of applications: signal amplification, digital logic, memory, etc...
- There are two major types of three-terminal semiconductor devices:
 - BJT—bipolar junction transistor
 - MOSFET—metal oxide-semiconductor field-effect transistor
- MOSFETs are considered preferable to BJT technology for many applications and are much widely used because:
 - size (smaller)
 - ease of manufacture
 - lesser power utilization
 - backbone of very large scale integration (VLSI)
 - Easier to manufacture

■ two n-type doped regions (drain, source), and one p-type doped region

layer of SiO₂ separates source and drain
 metal, placed on top of SiO₂, forms gate electrode
 Four terminals: the gate(G), the source (S), the drain (D) and the Body (B).

FIG 1. Physical structure of the enhancement-type NMOS transistor.

- two n-type doped regions (drain, source), and one p-type doped region
- layer of SiO₂ separates source and drain
- metal, placed on top of SiO₂, forms gate electrode
 Four terminals: the gate(G), the source (S), the drain (D) and the Body (B).

FIG 1. Physical structure of the enhancement-type NMOS transistor.

- two n-type doped regions (drain, source), and one p-type doped region
- layer of SiO₂ separates source and drain
- metal, placed on top of SiO₂, forms gate electrode

■ Four terminals: the gate(G), the source (S), the drain (D) and the Body (B).

FIG 1. Physical structure of the enhancement-type NMOS transistor.

- two n-type doped regions (drain, source), and one p-type doped region
- layer of SiO₂ separates source and drain
- metal, placed on top of SiO₂, forms gate electrode
- Four terminals: the gate(G), the source (S), the drain (D) and the Body (B).

FIG 1. Physical structure of the enhancement-type NMOS transistor.

Operations with zero gate voltage

- With zero voltage applied to gate, two back-to-back diodes exist in series between drain and source.
- These diodes prevent current conduction from drain to source when a voltage v_{DS} is applied.
- In short, the path between drain and source has a very high resistance (of the order of 10 TΩ.

Operations with zero gate voltage

- With zero voltage applied to gate, two back-to-back diodes exist in series between drain and source.
- These diodes prevent current conduction from drain to source when a voltage v_{DS} is applied.
- In short, the path between drain and source has a very high resistance (of the order of 10 TΩ.

Operations with zero gate voltage

- With zero voltage applied to gate, two back-to-back diodes exist in series between drain and source.
- These diodes prevent current conduction from drain to source when a voltage v_{DS} is applied.
- In short, the path between drain and source has a very high resistance (of the order of 10 TΩ.

What would happen if (1) the source and drain are grounded and (2) a positive voltage is applied to gate ?

FIG 2. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- **Step 1**—*v*_{GS} is applied to the gate terminal, causing a positive build up of positive charge along metal electrode.
- Step 2—This "build up" causes free holes to be repelled from region of p-type substrate under gate.

FIG 3. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- **Step 1**—*v*_{GS} is applied to the gate terminal, causing a positive build up of positive charge along metal electrode.
- Step 2—This "build up" causes free holes to be repelled from region of p-type substrate under gate.

FIG 3. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- **Step 1**—*v*_{GS} is applied to the gate terminal, causing a positive build up of positive charge along metal electrode.
- Step 2—This "build up" causes free holes to be repelled from region of p-type substrate under gate.
- Step 3—This "migration" results in the uncovering of negative bound charges, originally neutralized by the free holes
- **Step 4**—The positive gate voltage also attracts electrons from the *n*⁺ source and drain regions into the channel.

FIG 4. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- **Step 1**—*v*_{GS} is applied to the gate terminal, causing a positive build up of positive charge along metal electrode.
- Step 2—This "build up" causes free holes to be repelled from region of p-type substrate under gate.
- Step 3—This "migration" results in the uncovering of negative bound charges, originally neutralized by the free holes
- **Step 4**—The positive gate voltage also attracts electrons from the *n*⁺ source and drain regions into the channel.

FIG 4. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- Step 5—Once a sufficient number of these electrons accumulate, an n-region is created and connects the source and drain regions
- **Step 6**—This provides path for current flow between D and S.
- Note: This induced channel is also known as an inversion layer

FIG 5. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- Step 5—Once a sufficient number of these electrons accumulate, an n-region is created and connects the source and drain regions
- Step 6—This provides path for current flow between D and S.
- Note: This induced channel is also known as an inversion layer

FIG 5. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- Step 5—Once a sufficient number of these electrons accumulate, an n-region is created and connects the source and drain regions
- Step 6—This provides path for current flow between D and S.
- Note: This induced channel is also known as an inversion layer

FIG 5. The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n-channel is induced at the top of the substrate beneath the gate.

- threshold voltage Vt¹ is the minimum value of v_{GS} required to form a conducting channel between drain and source and is between 0.3 and 0.6V²
- field-effect when positive *v*_{GS} is applied, an electric field develops between the gate electrode and induced n-channel the conductivity of this channel is affected by the strength of field. The *SiO*₂ layer acts as dielectric
- The difference between v_{GS} applied and V_t is termed the effective voltage or the overdrive voltage and is the quantity that determines the charge in the channel. It is noted as shown in Equation (1)

$$v_{GS} - Vt \equiv v_{ov} \tag{1}$$

¹do not confuse V_t with V_T —The latter is used to denote the thermal voltage VT ${}^2V_{tn}$ is used for n-type MOSFET and V_{to} is used for p-channel

Kizito NKURIKIYEYEZU, Ph.D.

- threshold voltage Vt¹ is the minimum value of v_{GS} required to form a conducting channel between drain and source and is between 0.3 and 0.6V²
- field-effect when positive v_{GS} is applied, an electric field develops between the gate electrode and induced n-channel – the conductivity of this channel is affected by the strength of field. The SiO₂ layer acts as dielectric
- The difference between v_{GS} applied and V_t is termed the effective voltage or the overdrive voltage and is the quantity that determines the charge in the channel. It is noted as shown in Equation (1)

$$v_{GS} - Vt \equiv v_{ov} \tag{1}$$

¹do not confuse V_t with V_T —The latter is used to denote the thermal voltage VT ${}^2V_{tn}$ is used for n-type MOSFET and V_{to} is used for p-channel

Kizito NKURIKIYEYEZU, Ph.D.

- threshold voltage Vt¹ is the minimum value of v_{GS} required to form a conducting channel between drain and source and is between 0.3 and 0.6V²
- field-effect when positive v_{GS} is applied, an electric field develops between the gate electrode and induced n-channel – the conductivity of this channel is affected by the strength of field. The SiO₂ layer acts as dielectric
- The difference between v_{GS} applied and V_t is termed the effective voltage or the overdrive voltage and is the quantity that determines the charge in the channel. It is noted as shown in Equation (1)

$$v_{GS} - Vt \equiv v_{ov} \tag{1}$$

¹do not confuse V_t with V_T —The latter is used to denote the thermal voltage VT ${}^2V_{tn}$ is used for n-type MOSFET and V_{tp} is used for p-channel

Kizito NKURIKIYEYEZU, Ph.D.

- A conducting channel forms a parallel plate capacitor with the gate
- The charge Q created in the charge is given by Equation (2) and Equation (3)

$$Q = CV \tag{2}$$

$$|Q| = C_g \cdot v_{OV} \tag{3}$$

Where the gate capacitor is given by Equation (4)

$$C_g = C_{ox} WL \tag{4}$$

Where:

 C_{ox} is the capacitance per unit are *WL* is the area of the electrode

■ Since the parallel plate capacitor is given by expressed by the area *A* and the distance *d* between the plates Equation (5)

$$r = \frac{\epsilon A}{d}$$

Then, the oxide capacitance (Cox) (i.e., the capacitance of the parallel plate capacitor per unit gate area (F/m^2)) is given by

C

$$C_{OX} = \epsilon_{OX} / t_{OX} \tag{6}$$

where:

 ϵ_{ox} is the permittivity of the silicon dioxide $\epsilon_{ox} = 3.45 \times 10^{-11} F/m$ t_{ox} = is the thickness of the silicon layer *SiO*₂

The voltage across the silicon layer must exceed V_t for the n-channel to form
 As v_{ov} grows, so does the depth of the n-channel as well as its conductivity.

(5)

Since the parallel plate capacitor is given by expressed by the area A and the distance d between the plates Equation (5)

$$C = \frac{\epsilon A}{d} \tag{5}$$

Then, the oxide capacitance (Cox) (i.e., the capacitance of the parallel plate capacitor per unit gate area (F/m^2)) is given by

$$C_{OX} = \epsilon_{OX} / t_{OX} \tag{6}$$

where:

 ϵ_{ox} is the permittivity of the silicon dioxide $\epsilon_{ox} = 3.45 \times 10^{-11} F/m$ t_{ox} = is the thickness of the silicon layer *SiO*₂

The voltage across the silicon layer must exceed V_t for the n-channel to form
 As v_{ov} grows, so does the depth of the n-channel as well as its conductivity.

Since the parallel plate capacitor is given by expressed by the area A and the distance d between the plates Equation (5)

$$C = \frac{\epsilon A}{d} \tag{5}$$

Then, the oxide capacitance (Cox) (i.e., the capacitance of the parallel plate capacitor per unit gate area (F/m^2)) is given by

$$C_{OX} = \epsilon_{OX} / t_{OX} \tag{6}$$

where:

 ϵ_{ox} is the permittivity of the silicon dioxide $\epsilon_{ox} = 3.45 \times 10^{-11} F/m$

 t_{ox} = is the thickness of the silicon layer SiO₂

The voltage across the silicon layer must exceed V_t for the n-channel to form
 As v_{ov} grows, so does the depth of the n-channel as well as its conductivity.

Since the parallel plate capacitor is given by expressed by the area A and the distance d between the plates Equation (5)

$$C = \frac{\epsilon A}{d} \tag{5}$$

Then, the oxide capacitance (Cox) (i.e., the capacitance of the parallel plate capacitor per unit gate area (F/m^2)) is given by

$$C_{OX} = \epsilon_{OX} / t_{OX} \tag{6}$$

where:

 ϵ_{ox} is the permittivity of the silicon dioxide $\epsilon_{ox} = 3.45 \times 10^{-11} F/m$ t_{ox} = is the thickness of the silicon layer *SiO*₂

The voltage across the silicon layer must exceed V_t for the n-channel to form As v_{ov} grows, so does the depth of the n-channel as well as its conductivity.

■ Since the parallel plate capacitor is given by expressed by the area *A* and the distance *d* between the plates Equation (5)

$$C = \frac{\epsilon A}{d} \tag{5}$$

Then, the oxide capacitance (Cox) (i.e., the capacitance of the parallel plate capacitor per unit gate area (F/m^2)) is given by

$$C_{OX} = \epsilon_{OX} / t_{OX} \tag{6}$$

where:

 ϵ_{ox} is the permittivity of the silicon dioxide $\epsilon_{ox} = 3.45 \times 10^{-11} F/m$ t_{ox} = is the thickness of the silicon layer SiO₂

• The voltage across the silicon layer must exceed V_t for the n-channel to form

• As v_{ov} grows, so does the depth of the n-channel as well as its conductivity.

■ Since the parallel plate capacitor is given by expressed by the area *A* and the distance *d* between the plates Equation (5)

$$C = \frac{\epsilon A}{d} \tag{5}$$

Then, the oxide capacitance (Cox) (i.e., the capacitance of the parallel plate capacitor per unit gate area (F/m^2)) is given by

$$C_{OX} = \epsilon_{OX} / t_{OX} \tag{6}$$

where:

 ϵ_{ox} is the permittivity of the silicon dioxide $\epsilon_{ox} = 3.45 \times 10^{-11} F/m$ t_{ox} = is the thickness of the silicon layer *SiO*₂

- The voltage across the silicon layer must exceed V_t for the n-channel to form
- As v_{ov} grows, so does the depth of the n-channel as well as its conductivity.

Small v_{DS} Model

What is the current i_D For small values of v_{DS} (i.e., 50 mV or so)?

The charge of the parallel plate capacitor between the gate and the channel is given by Equation (8)

$$Q = CV \tag{7}$$

$$|Q| = C_{ox} W L v_{OV}$$
 (8)

The charge per unit length Q_n is then given by Equation (9)

$$Q_n = \frac{|Q|}{L} = C_{ox} W L v_{OV} \qquad (9)$$

FIG 6. An NMOS transistor with $v > V_t$ and with a small v_{DS} applied. The device acts as a resistance whose value is determined by v_{GS} . Specifically, the channel conductance is proportional to $v_{GS} - Vt$, and thus i_D is proportional to $(v_{GS} - V_t)v_{DS}$.

What is the current i_D For small values of v_{DS} (i.e., 50 mV or so)?

The charge of the parallel plate capacitor between the gate and the channel is given by Equation (8)

$$Q = CV \tag{7}$$

$$|Q| = C_{ox} W L v_{OV}$$
 (8)

■ The charge per unit length *Q_n* is then given by Equation (9)

$$Q_n = \frac{|Q|}{L} = C_{ox} W L v_{OV} \qquad (9)$$

FIG 6. An NMOS transistor with $v > V_t$ and with a small v_{DS} applied. The device acts as a resistance whose value is determined by v_{GS} . Specifically, the channel conductance is proportional to $v_{GS} - Vt$, and thus i_D is proportional to $(v_{GS} - V_t)v_{DS}$.

Then the electric field along the channel is given by Equation (10)

$$|E| = \frac{v_{DS}}{L} \tag{10}$$

The drift velocity of the electrons is given by Equation (11)

$$V_{drift} = \mu_n |E|$$

= $\mu_n rac{v_{DS}}{L}$

FIG 7. An NMOS transistor with $v > V_t$ and with a small v_{DS} applied. The device acts as a resistance whose value is determined by v_{GS} . Specifically, the channel conductance is proportional to $v_{GS} - Vt$, and thus i_D is proportional to $(v_{GS} - V_t)v_{DS}$.

Then the electric field along the channel is given by Equation (10)

$$|E| = \frac{v_{DS}}{L} \tag{10}$$

The drift velocity of the electrons is given by Equation (11)

$$m{v}_{drift} = \mu_n |m{E}| \ = \mu_n rac{m{v}_{DS}}{L}$$

(11) **FIG 7.** An NMOS transistor with $v > V_t$ and with a small v_{DS} applied. The device acts as a resistance whose value is determined by v_{GS} . Specifically, the channel conductance is proportional to $v_{GS} - Vt$, and thus i_D is proportional to $(v_{GS} - V_t)v_{DS}$.

For small v_{DS} , we can assume that the voltage between the gate and various points along the channel is equal to v_{GS} . i_D is given by Equation (12)²

$$i_{D} = Q_{n} v_{drift}$$

$$= C_{ox} W v_{OV} \mu_{n} \frac{v_{DS}}{L}$$

$$= \left[\mu_{n} C_{ox} \left(\frac{W}{L} \right) v_{ov} \right] v_{DS}$$

$$= \left[\mu_{n} C_{ox} \left(\frac{W}{L} \right) (v_{GS} - V_{t}) \right] v_{DS}$$
(12)

■ The conductance is given by Equation (13)

$$g_{DS} = \mu_n C_{ox} \left(\frac{W}{L}\right) v_{OV} = \mu_n C_{ox} \left(\frac{W}{L}\right) (v_{GS} - V_t)$$
(15)

²See details in the textbook on page 253

Kizito NKURIKIYEYEZU, Ph.D.

For small v_{DS} , we can assume that the voltage between the gate and various points along the channel is equal to v_{GS} . i_D is given by Equation (12)²

$$i_{D} = Q_{n} v_{drift}$$

$$= C_{ox} W v_{OV} \mu_{n} \frac{v_{DS}}{L}$$

$$= \left[\mu_{n} C_{ox} \left(\frac{W}{L} \right) v_{ov} \right] v_{DS}$$

$$= \left[\mu_{n} C_{ox} \left(\frac{W}{L} \right) (v_{GS} - V_{t}) \right] v_{DS}$$
(12)

■ The conductance is given by Equation (13)

$$g_{DS} = \mu_n C_{ox} \begin{pmatrix} W \\ L \end{pmatrix} v_{OV} = \mu_n C_{ox} \begin{pmatrix} W \\ L \end{pmatrix} (v_{GS} - V_t)$$
(13)

²See details in the textbook on page 253

- The factor $k'_n = \mu_n C_{ox}$ is called the process transconductance and is affected by the type of manufacturing process
- The ratio of the width W to the length L (i.e., W/L) affects the conductance. For example, in the recent 5nm lithography technology process, the channel length L cannot be smaller than 5nm.
- A MOSFET transconductance parameter is given by

$$k_n = k'_n \frac{W}{L} = \mu_n C_{ox} \frac{W}{L}$$
(14)

■ The conductance depends on *v_{GS}*

$$r_{DS} = 1/g_{DS} = 1/\mu_n C_{ox} (W/L) v_{OV} = \frac{1}{\mu_n C_{ox} (W/L) (v_{GS} - V_t)}$$
(15)

FIG 8. MOSFET operations for various values of v_{GS}

A MOSFET is a voltage-controlled resistance. The slope of the curve which is g_{DS} is dependent on v_{GS} since $V_{OV} = v_{GS} - V_t$. When the voltage applied between drain and source, v_{DS} , is kept small, the device operates as a linear resistance whose value is controlled by v_{GS} .

Large V_{DS} Model

Large *v*_{DS} Model of a MOSFET

- Let's assume *v*_{OV} is constant. In this case, as *v*_{DS} increases, the induced channel width will be different.
- Different v_{GS} will draw different amount of n carrier into the channel creating a non-uniform depth of the channel as shown in Fig. 9
- The channel depth is proportional to v_{GS} at the source end or

$$v_{GS} = V_t + V_{OV}$$
(16)

FIG 9. Operation of an NMOS transistor as vDS is increased. Note that an unequal channel depth is induced when a larger v_{DS} is applied across the transistor giving rise to non-uniform channel depth

Large *v*_{DS} Model of a MOSFET

The channel depth is proportional to v_{GD} at the drain end or

$$v_{GD} = V_t + V_{OV} - vDS \qquad (17)$$

FIG 10. Operation of an NMOS transistor as v_{DS} is increased. Note that an unequal channel depth is induced when a larger v_{DS} is applied across the transistor giving rise to non-uniform channel depth

- When *v*_{DS} increases beyond "small values", the relationship between *i*_D and *v*_{DS} ceases to be linear.
- Explanation:
 - **step1** Assume that *v*_{GS} is held constant at value greater than *V*_t.
 - step2 Also assume that v_{DS} is applied and appears as voltage drop across n-channel.
 - step3 Note that voltage decreases from v_{GS} at the source end of channel to v_{GD} at drain end

$$V_{GD} = V_{GS} - V_{DS}$$

= $V_t + V_{OV} - V_{DS}$ (1)

FIG 11. Operation of an NMOS transistor as v_{DS} is increased. Note the unequal channel depth due to a larger v_{DS} is applied across the transistor giving rise to non-uniform channel depth.

Kizito NKURIKIYEYEZU, Ph.D.

- When *v*_{DS} increases beyond "small values", the relationship between *i*_D and *v*_{DS} ceases to be linear.
- Explanation:
 - **step1** Assume that *v*_{GS} is held constant at value greater than *V*_t.
 - step2 Also assume that v_{DS} is applied and appears as voltage drop across n-channel.
 - step3 Note that voltage decreases from v_{GS} at the source end of channel to v_{GD} at drain end

$$V_{GD} = V_{GS} - V_{DS}$$
$$= V_t + V_{OV} - V_{DS}$$
(1)

FIG 11. Operation of an NMOS transistor as v_{DS} is increased. Note the unequal channel depth due to a larger v_{DS} is applied across the transistor giving rise to non-uniform channel depth.

- When *v*_{DS} increases beyond "small values", the relationship between *i*_D and *v*_{DS} ceases to be linear.
- Explanation:
 - **step1** Assume that v_{GS} is held constant at value greater than V_t .
 - step2 Also assume that v_{DS} is applied and appears as voltage drop across n-channel.
 - step3 Note that voltage decreases from v_{GS} at the source end of channel to v_{GD} at drain end

$$v_{GD} = v_{GS} - v_{DS}$$

= $V_t + v_{OV} - v_{DS}$ (18)

FIG 11. Operation of an NMOS transistor as v_{DS} is increased. Note the unequal channel depth due to a larger v_{DS} is applied across the transistor giving rise to non-uniform channel depth.

FIG 12. Linear proportionality of the channel depth of a MOSFET

In Fig. 12a, when $v_{GS} = V_t + V_{OV}$, applying v_{DS} causes the voltage drop along the channel to vary linearly, with an average value of $1/2v_{DS}$ at the midpoint. Since $v_{GD} > V_t$, the channel still exists at the drain end. Fig. 12b shows the channel shape corresponding to the situation in Fig. 12a. While the depth of the channel at the source end is still proportional to V_{OV} , that at the drain end is proportional to $(V_{OV} - v_{DS})$.

step4 Define i_{DS} in terms of v_{DS} and v_{OV} .

■ Without tapering of the charge, if v_{OV} is independent of x, the area under the curve is vOVL. But with tapering, by using the area of a trapezoid, this area evaluates to $(V_{OV} - 1/2v_{DS})L$

• Previously, we saw that i_D is defined by Equation (19)

$$i_{D} = \left[\mu_{n} C_{ox} \frac{W}{L} \left(v_{OV} - \frac{1}{2} v_{DS}\right)\right] v_{DS} \\ = \left[\mu_{n} C_{ox} \frac{W}{L} \left(v_{OV} v_{DS} - \frac{1}{2} v_{DS}^{2}\right)\right]$$
(19)

Since now $v_{OV} = v_{GS} - V_t$, then Equation (19) becomes

$$i_{D} = \mu_{n} C_{ox} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

= $k_{n}^{\prime} \frac{W}{L} \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$ (20)

■ Notice that when v_{DS} is small, the quadratic term can be dropped and we end up with the small v_{DS} equation.

Operation for $v_{DS} \ge v_{OV}$

Channel Pinch-Off and Current Saturation

FIG 13. Operation of MOSFET with $v_{GS} = V_t + V_{OV}$

When $v_{DS} = V_{OV}$, at the drain end, v_{GD} decreases to V_t and the channel depth at the drain end reduces to zero (pinch-off). At this point, the MOSFET enters the saturation mode of operation. Further increasing v_{DS} has no effect on the channel shape and i_D remains constant.

Channel Pinch-Off and Current Saturation

- When $v_{DS} = V_{OV}$, then the channel depth is zero near the drain end
- At this junction, increasing v_{DS} does not increase the drain current i_D

$$i_{Dsat} = \frac{1}{2} k' \frac{W}{L} V_{OV}^2 \tag{21}$$

The saturation voltage is given by

$$V_{DSsat} = V_{OV} = V_{GS} - V_t \tag{22}$$

■ In general, as a function of v_{OV} , in the saturation region,

$$i_{D} = \frac{1}{2} k_{n}^{\prime} \frac{W}{L} v_{OV}^{2} = \frac{1}{2} k_{n}^{\prime} \frac{W}{L} (v_{GS} - V_{t})^{2}$$
(23)

In the saturation region, the relation between i_{DS} and v_{GS} is nonlinear.

FIG 14. The drain current i_D versus the drain-to-source voltage v_{DS} for an NMOS transistor operated with $v_{GS} = V_t + V_{OV}$

The p and Complementary MOSFET

The p-Channel MOSFET

A PMOS can be made by replacing p region with n region and vice versa

FIG 15. Physical structure of the PMOS transistor

Note that it is similar to the NMOS transistor except that all semiconductor regions are reversed in polarity. Fig. 15b shows the effect of a negative voltage v_{GS} of magnitude greater than V_{tp} . This negative voltage induces a p-channel, and a negative v_{DS} causes a current i_D to flow from source

The complementary MOS of CMOS

CMOS employs MOS transistors of both polarities.

- more difficult to fabricate
- more powerful and flexible
- now more prevalent than NMOS or PMOS

FIG 16. Cross section of a CMOS integrated circuit.

Note that the PMOS transistor is formed in a separate n-type region, known as an n well. Another arrangement is also possible in which an n-type substrate (body) is used and the n device is formed in a p well. Not shown are the connections made to the p-type body and to the n well; the latter functions as the body terminal for the p-channel device.

Kizito NKURIKIYEYEZU, Ph.D.

End